
SECURE
SDLC

Jim Manico @manicode

! OWASP Volunteer
!  Global OWASP Board Member
!  Manager of several OWASP

secure coding projects

! Security Instructor, Author
!  17 years of web-based, database-

driven software development and
analysis experience

!  Author of "Iron Clad Java" from
Oracle Press and McGraw Hill

! Resident of Kauai, Hawaii
!  Aloha!

Poor Communication = Epic Software Dev Failure

If you don’t have a published SDLC......

YOU WILL
NOT LIKELY BE
SUCCESSFUL!

4

Security in the SDLC

Essential that security is embedded in all stages of the SDLC
" Business Requirements
" Technical Requirements
" Development
" Testing
" Deployment
" Operations

"The cost of removing an application security vulnerability during the
design phase ranges from 30-60 times less than if removed during
production."
" NIST, IBM, and Gartner Group

SDLC building blocks

Published SDLC (++)
Secure Coding Guidelines (-)
Secure Coding Checklist (+)
Non Functional Requirements (++)
Static Code Analysis (+)
Manual Code Review (+)
Dynamic Code Analysis (+)
Giving Raw Scanner Data to Dev (-)
Security Awareness Training (+++)
Threat Modeling (+/-)
Application Security Risk Matrix (++)
Center of Excellence (++)

Security in the SDLC

Secure
Requirements

Review

Secure
Design
Review

Secure
Code

Review

Penetration
Testing

Require-
ments

Definition
Design Develop Test Deploy/

Implement

Maintain

Security in the SDLC with more beef

Business
Requirements

& Use Cases
Testing Deployment &

Maintenance Design Test
Plans Coding

Architecture
Risk Analysis

Test
Planning

Penetration
Tests

Application
Portfolio
Analysis

External
Security
Review

Static Code
Analysis

Security
Metrics

Development

Pre-

Implement
Risk Mgt.

User Risk
Analysis

Design Risk
Analysis

Application
Infrastructure
Management

Test
Reviews

Developer
Training

Coding
Standards

Development

Secure
Coding

Libraries

Application
Infrastructure
Management

Operations
and Incident

Response

Security requirements

What are the key security risks within the application? It depends.
" Type of information is the application processing
" Size of company, number of users, danger of features
" Financial and other business impact of potential incidents

Involve risk group and/or internal audit to avoid later conflict

Establishing the security requirements for the application

Identify organizations standards (e.g. password lengths, security
schemes), legal and regulatory security requirements!

Are these requirements actionable by the development, testing and
operations teams?

OWASP Application Security Verification
Standard (ASVS)

Built in security area sections
" Authentication
" Session Management
" Etc...

Excellent way to manage pentesting and other assessment teams

OWASP standard for security verification of applications

Excellent standard to help developers understand secure coding
controls from a high level

ASVS 2 Authentication Requirements (Easy to Discover)

"  V2.1 Verify all pages and resources require authentication except those specifically
intended to be public (Principle of complete mediation).

"  V2.2 Verify all password fields do not echo the user’s password when it is entered.
"  V2.4 Verify all authentication controls are enforced on the server side.
"  V2.6 Verify all authentication controls fail securely to ensure attackers cannot log

in.
"  V2.16 Verify that credentials, and all other identity information handled by the

application(s), do not traverse unencrypted or weakly encrypted links.
"  V2.17 Verify that the forgotten password function and other recovery paths do not

reveal the current password and that the new password is not sent in clear text to
the user.

"  V2.18 Verify that username enumeration is not possible via login, password reset,
or forgot account functionality.

"  V2.19 Verify there are no default passwords in use for the application framework
or any components used by the application (such as "admin/password").

ASVS 2 Authentication Requirements (Intermediate, p1)

"  V2.7 Verify password entry fields allow or encourage the use of passphrases, and
do not prevent long passphrases or highly complex passwords being entered, and
provide a sufficient minimum strength to protect against the use of commonly
chosen passwords.

"  V2.8 Verify all account identity authentication functions (such as registration,
update profile, forgot username, forgot password, disabled / lost token, help desk
or IVR) that might regain access to the account are at least as resistant to attack
as the primary authentication mechanism.

"  V2.9 Verify users can safely change their credentials using a mechanism that is at
least as resistant to attack as the primary authentication mechanism.

"  V2.12 Verify that all authentication decisions are logged. This should include
requests with missing required information, needed for security investigations.

"  V2.13 Verify that account passwords are salted using a salt that is unique to that
account (e.g., internal user ID, account creation) and use bcrypt, scrypt or PBKDF2
before storing the password.

ASVS 2 Authentication Requirements (Intermediate, p2)

"  V2.20 Verify that a resource governor is in place to protect against vertical (a
single account tested against all possible passwords) and horizontal brute forcing
(all accounts tested with the same password e.g. “Password1”). A correct
credential entry should incur no delay. Both these governor mechanisms should be
active simultaneously to protect against diagonal and distributed attacks.

"  V2.21 Verify that all authentication credentials for accessing services external to
the application are encrypted and stored in a protected location (not in source
code).

"  V2.22 Verify that forgot password and other recovery paths send a link including a
time-limited activation token rather than the password itself. Additional
authentication based on soft-tokens (e.g. SMS token, native mobile applications,
etc.) can be required as well before the link is sent over.

"  V2.23 Verify that forgot password functionality does not lock or otherwise disable
the account until after the user has successfully changed their password. This is to
prevent valid users from being locked out.

"  V2.24 Verify that there are no shared knowledge questions/answers (so called
"secret" questions and answers).

"  V2.25 Verify that the system can be configured to disallow the use of a
configurable number of previous passwords.

ASVS 2 Authentication Requirements (Advanced)

"  V2.5 Verify all authentication controls (including libraries that call external
authentication services) have a centralized implementation.

"  V2.26 Verify re-authentication, step up or adaptive authentication, SMS or other
two factor authentication, or transaction signing is required before any application-
specific sensitive operations are permitted as per the risk profile of the application.

Gratuitious slide with pictures to
break up all the text slides

Agile Principles

• Welcome'changing'requirements,'even'late'in'development.''
• Deliver'working'so:ware'frequently.'Working'so:ware'is'
the'primary'measure'of'progress.'

• Business'people'and'developers'must'work''together'daily.'
•  The'most'efficient'and'effecAve'method'of'conveying'
informaAon'to'and'within'a'development''team'is'faceBtoB
face'conversaAon.'

• ConAnuous'aDenAon'to'technical'excellence'and'good'
design'enhances'agility.'

•  SimplicityBBthe'art'of'maximizing'the'amount''of'work'not'
doneBBis'essenAal.'

• At'regular'intervals,'the'team'reflects'on'how'to'become'
more'effecAve,'then'tunes'and'adjusts'its'behavior'
accordingly.'

Agile Workflow

Agile Security

Security Sprint Approach Every Sprint Approach

Security Sprint Approach:
"  Dedicated sprint focusing on application

security.
"  Stories implemented are security related.
"  Code is reviewed.
"  Stories may include:

!  Input validation story
!  Logging story
!  Authentication story
!  Authorization
!  XSS Story
!  SQLi Story

Every Sprint Approach:
"  Similar to Microsoft Security Development

Lifecycle (SDL).
"  Consists of the requirements and stories

essential to security.
"  No software should ever be released without

requirements being met.
"  Sprint is two weeks or two months long.
"  Every security requirement in the every-

Sprint category must be completed in each
and every Sprint.
!  Or the Sprint is deemed incomplete, and

the software cannot be released.

Many%organiza+ons%that%claim%to%do%"agile%
development"%are%far%from%agile!%

Non-Functional Requirements (++)

Most effective of all building blocks

‘Container’ for other SDLC building blocks.

Can include application security guidelines,
secure coding checklist, security policies, etc.

Effective NFRs will document the requirement
and explain why the requirement is
necessary.

Application Security Requirements Tailoring

" Get'the'security'requirements'and'policy'right'

" Start'with'a'generic'security'requirements'
! Must'include'all'security'mechanisms'
! Must'address'all'common'vulnerabiliAes'
! Can'be'use'(or'misuse)'cases'

" Tailoring'examples…'
! Specify'how'authenAcaAon'will'work'
! Detail'the'access'control'policy'
! Define'the'input'validaAon'rules'
! Choose'a'logging'approach'

Developers%are%almost%NEVER%given%
clear%security%requirements%and%this%%
is%a%absolute%massive%SDLC%failure!!!%

Threat modeling (+/-)

Hit or miss at most
locations

Can be informal process

Combines nicely with
NFRs

Discussing NFR often
leads to threat modeling
discussion

Application Security Risk Matrix (++)

External facing Data:
Non sensitive

Data:
sensitive

Internal facing
Data:

Non sensitive
Data:

sensitive

Development

Ensuring that code is developed securely and implementing the
security controls identified during the design phase

Security audit and code reviews
" Secure coding standards
" Automated code review tools
" Independent code review by third party or IT security

Developer security awareness programs

Unit testing of security features of the application

Secure Coding Libraries (+++)

Reusable Security Controls

These are the software centric
building blocks that defend software

These components are the heart of
application security defense

Dedicate your top developer
resources into vetting, building and
standardizing on these components

Build training, testing and other
activities around these artifacts

Security awareness training (+++)

Instructor-led training

Course curriculum for each job
responsibility

Very useful for educating on attack
techniques and unexpected
behavior

Rewards for training

Your goal should be to provide anyone that
can influence application security, e.g.

project managers, development managers,
application developers, server configuration,

release management, QA, etc. with the
training, awareness and resources they need

to be successful.

Secure Coding Guidelines (-)

Overlooked by developers

“Static and not helpful”

100+ pages that can be
language specific

Most surprising discovery
over the last 5 years

Secure Coding Checklist (+)

Simple 1-2 page document

All checklist items must be
relevant

Brief document must be backed
up with deeper resources and
code samples

Testing

Ensure the application meets the security standards and security
testing is performed

Has the security design been implemented correctly in the application
components?

Execution of test plans created during the design phase

Independent penetration testing, including infrastructure assessment

Security release and sign off before deployment to the production
environment

Why Code review

 Source: Applied Software Measurement, Capers Jones, 1996

The Cost of Software Bugs

“We cant
hack our-
selves
secure, and if
we could it
would cost
too much”

Static Code Analysis (SCA) (+)

SDLC requires SCA

Must be baked into acceptance
criteria for code to leave the
SDLC.

Assurance to QA that code is
ready for testing

SCA can be integrated into the
build process (each automated
build spawns Static Code
Analysis)

Dynamic Code Analysis (+)

Looks for unexpected application behavior within the
interface

Dynamic analysis can happen multiple times during each
iteration

Assurance to QA that code is ready for testing

Dynamic analysis can offer 24/7 monitoring

Be tied to incident management process

Giving Raw Scanner Reports to
Developers (----------------------)

Most scanner reports have significant
false positives

If you give a false positive laden
report to developers who do not have
deep security training then please
tell me what are you thinking?

The first time you give a false reading
to a developer you lose them forever.

Center of Excellence (++)

COE Steering Committee
COE Drivers
COE Members

Remove barriers between
departments

Positively impact change

If developers have application security
questions, where do they go?

Dashboards (++)

Monitor key application security behaviour

Build a framework where adding more monitoring points
is easy to add

Build live dashboards for monitoring teams

Detect early when anomolies occur

Monitor and Tune ALL the things

Splunk

Trending and anomalies

Tracking (++)

It's hard to know if you are getting better unless you can
measure it

Track vulnerability data in some form of security CMS

Track trends. Be able to answer which teams and which
applications are getting better or worse over time and
adjust.

ThreadFix

• An'open'source'vulnerability'management'
and'aggregaAon'plaSorm'that'allows'
so:ware'security'teams'to'reduce'the'
Ame'it'takes'to'fix'so:ware'vulnerabiliAes'

• Freely'available'under'the'Mozilla'Public'
License'(MPL)'

• Download'available'at:'
www.denimgroup.com/threadfix'

Threadfix Risk Tracking

•  Heads up view of vulnerability burn down, most vulnerable applications, and
recent files uploads and comments.

http://www.simplerisk.org

" Mozilla Public License 2.0
" Open source PHP code
" Open source MySQL database

Define Your Risk Rating System

Plan Mitigations & Perform Reviews

Prioritize for Project Planning

Risk Dashboard & Reporting

@manicode
jim@owasp.org
jim@manico.net

