) 7

v

MANICODE

SECURE CODING EDUCATION

OAuth 2.0 Security
with
jim@manicode.com

JIMMANICO Secure Coding Instructor www.manicode.com

A little background dirt...

jim@manico.net

@manicode

= OWASP Global Board Member

» Project manager of the | oracre I
OWASP Cheat Sheet Series and), — ’
several other OWASP projects Y

= 18+ years of software IQE \
development experience Nk

Iron-Clad Java: Building

= Author of "lron-Clad Java, Secure Web Applications ..
Building Secure Web Applications” o=
from McGraw-Hill/Oracle-Press

uuuuuuuuuuuuu

= Kauai, Hawaii Resident

COPYRIGHT ©2015 MANICODE SECURITY

WARNING: Please do not attempt to hack any
computer system without legal permission to do so.
Unauthorized computer hacking is illegal and can

be punishable by a range of penalties including

loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are
examples of good secure development tools and techniques. You may have
unknown legal, licensing or technical issues when making use of Free and Open
Source Software. You should consult your company's policy on the use of Free
and Open Source Software before making use of any software referenced in this
material.

COPYRIGHT ©2015 MANICODE SECURITY 3

OAuth 2.0: Where are we going?

OAuth Terms
Client Registration
OAuth Grant Types

OAuth Threat Model

OAuth Countermeasures and Controls

COPYRIGHT ©2015 MANICODE SECURITY

So, what is OAuth?

COPYRIGHT ©2015 MANICODE SECURITY 5

"OAuth is an authentication protocol

that allows users to approve applications
to act on their behalf without sharing
their password.”

https://dev.twitter.com/docs/auth/oauth/fag

COPYRIGHT ©2015 MANICODE SECURITY

OAuth is like a valet key. STOP HERE

It provides another domain FOR
delegated access to your
application server VALET

PARKING

What should OAuth NOT be used for?

 OAuth should not be used for traditional access control.

 OAuth should not be used for authentication.

 OAuth should not be used for federation.

OAuth should be used for delegation!

COPYRIGHT ©2015 MANICODE SECURITY

OAuth Security in Products is Stabilizing (osvdb.org)

COPYRIGHT ©2015 MANICODE SECURITY

Disc Date

2015-03-18

2015-01-09

2014-10-29

2014-10-08
2014-09-03
2014-07-11
2014-06-12
2014-06-12
2014-05-02
2014-04-13
2014-04-11

2014-04-02

2014-02-24
2014-01-17
2014-01-07

Search Query: text_type: alltext vuin_title: cauth

Title

IBM WebSphere Application Server Full / Liberty Profile OAuth Grant Password Functionality
Unspecified Remote Privilege Escalation

GNOME librest OAuth Implementation Invalid Pointer Dereference Arbitrary Code Execution

OAuthl Server Plugin for WordPress lib/class-wp-json-authentication-oauthl.php Token / Signature
Verification Timing Attack Weakness

OAuth?2 Client Module for Drupal Client Class API Error Message XSS

Oauth 2.0 Protocol Scope Handling Open Redirect Weakness

Katello API OAuth Authentication consumer key Value Handling Remote Memory Exhaustion DoS
WP Microblogs Plugin for WordPress get.php oauth verifier Parameter Reflected XSS

WP-RESTful Plugin for WordPress html api_authorize.php cauth callback Parameter Reflected XSS
OAuth / OpenlD Protocol Unspecified Application Redirect Weakness

Phabricator Anchor Reattachment Cauth Token Disclosure

Phabricator Login 302 Redirect Anchor Preservation Oauth Token Disclosure

I8M SmartCloud Analytics Log Analysis OAuth Authorization Endpoint Invalid Query Parameter
Response XSS

Phabricator Oauth Flow Arbitrary Attacker-controlled Twitter Account Authentication CSRF
Open-Xchange (OX) AppSuite cAuth API Call Unspecified Parameters Reflected XSS
OAuth Library for PHP Example Page Unspecified XSS

OAuth 2.0 Authorization Code Grant

Access Token (with Optional Refresh Token)

Resource
Owner
e Client Identifier & Redirection URl ——
User e User Authenticates > Authorization
Agent Server
Authorization Code
4@ Authorization Code & Redirection URI
Client

http://tools.ietf.org/html/rfc6749

COPYRIGHT ©2015 MANICODE SECURITY

This event has ended. View the official site or create your own event + mobile app — | Check it out

AppSec California 2015

You have two accounts with the same email. To prevent log in issues, merge them here —

a Schedule ¥ Speakers Attendees D a Man
Jim Manico Search

Manicode Security Jan 26-28,2015
Secure Coding Instructor M Santa Monica, CA, United States
Anahola. Hawaii All Day Training Course
' Break
: Bug Bash
@ manico.net
Keynote
Jim Manico is an author and educator of developer security awareness trainings and has a 18 Offsite Recreation
year history building software as a developer and architect. He is a frequent speaker on secure software practices and is Presentation
; -y ; Turbo Talk
a member of the JavaOne rockstar speaker community. Jim is also a Global Board Member for the OWASP foundation e Pur T :
opular
where he helps drive the strategic vision for the organization. He manages and participates in several OWASP projects,
including the OWASP cheat sheet series and several secure coding projects. Jim recently finished authoring the book Recently Active Attendees
"Iron-Clad Java: Building Secure Web Applications" from Oracle Press. For more information, see
http://www.linkedin.com/in/jmanico. | '_’;
a4
A A

COPYRIGHT ©2015 MANICODE SECURITY

This event has ended. View the official site or create your o

Edit Your Profile

Name Email

Jim Manico > jim@manico.net F

Change your username, password and privacy settings?

Connect your social networks to instantly fill out your profile and find friends that are also attending.

[P
-

|
eSS i

Connect Facebook Connect Twitter

Upload New Photo

Connect Foursquare
Remove Photo

Company Name Company Position

Manicode Security e Secure Coding Instructor
Website Location

http://www.manico.net o Anahola, Hawaii 2

Tell us about yourself. What should people talk to you about?

[/appseccalifornia2015.sched.org/twitter

00 /y Twitter / Authorize an app! Q\\ \

Cl g :
« - C {ofilps://apl.tW|tter.com/oauth/authorlze?oauth_token=ch6HAAAAAAAAE6qAAABUaOthY kd o e

| . -

Authorize Sched.org to use your

account?
P— pm— Sched.org
i s anes By Sched.org
sched.org
This application will be able to: Sched powers conference and festival

. Read Tweets from your timeline. scheduling sites for events all over the

world. Connect your Twitter account and

* See who you follow. instantly find friends that are attending the

same events!
Will not be able to:

» Follow new people.
Update your profile.
» Post Tweets for you.

Access your direct messages.

See your Twitter password.

You can revoke access to any application at any time from the Applications tab of your Settings page.

By authorizing an application you continue to operate under Twitter's Terms of Service. In particular, some usage information will be shared back

with Twitter. For more, see our Privacy Policy.

Applications
These are the apps that can access your Twitter account. Learn more.

You will need to generate a temporary password to log in to your Twitter account on other
devices and apps. Learn more.

Having trouble? Learn more.

Twitter for iPhone by Twitter Learn how to revoke an iOS app.
g Twitter for iPhone
Permissions: read, write, and direct messages
\9 Vine - Make a Scene by Vine Labs, Inc

Approved: Friday, December 9, 2011 at 1:33:14 PM

The best way to see and share life in motion. BavOKe access
Permissions: read and write

Approved: Saturday, January 26, 2013 at 9:08:44 AM

iOS by Apple®

iOS Twitter integration

Permissions: read and write

Approved: Friday, October 14, 2011 at 9:16:53 PM

Revoke access

Sched.org by Sched.org

Sched powers conference and festival scheduling sites for
events all over the world. Connect your Twitter account and
instantly find friends that are attending the same events!
Permissions: read-only

Revoke access

OAuth 2.0 Authorization Code Grant

Access Token (with Optional Refresh Token)

Resource
Owner
e Client Identifier & Redirection URl ——
User e User Authenticates > Authorization
Agent Server
Authorization Code
4@ Authorization Code & Redirection URI
Client

http://tools.ietf.org/html/rfc6749

COPYRIGHT ©2015 MANICODE SECURITY

Introduction to OAuth 2.0

COPYRIGHT ©2015 MANICODE SECURITY

Sample OAuth Workflow

Using OAuth, your eCommerce server can now tweet on
behalf of the user even when the user is not logged on.

How does this happen?

EI "
[

Then, whenever orders are complete

the eCommerce tweets a little note

abouthow awesome the eCommerce

company is - even when the user is not
logged onto the eCommerce server.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth History

DEC 2007
OAuth 1.0 final draft

2010
Twitter forces all
third party apps
to use OAuth 1.0
2007 ®
Eran Hammerjoins and
soon leads the specification OCT 2012 ,
® OAuth 2.0 framework published
NOV 2006 2008
Blaine Cook Google
begins working OAuth 1.0
on OAuth while support JUN 2012
at Twitter begins Eran ragequits the OAuth 2.0
® 2007 ® body after the shift from
Ma.gnolia, crypto to bearertokens
Google and others
join the discussion
| | |
2005 2010 201 g

COPYRIGHT ©2015 MANICODE SECURITY

OAuth v1 and v2

"OAuth 2.0 at the hand of a developer with
deep understanding of web security will likely
result [in] a secure implementation. However,
at the hands of most developers ... 2.0 is
likely to produce insecure implementations.”

— Eran Hammer, Editor of OAuth 1.0 Specification

http://nueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://nueniverse.com/2010/09/29/oauth-bearer-tokens-are-a-terrible-idea/

COPYRIGHT ©2015 MANICODE SECURITY

OAuth v1

OAuth 1.0 Messages

Founded in
Cryptography

are Individually Signed

Limited Device Support
Beyond the Web

Platform Interoperability and
Implementation Challenges

COPYRIGHT ©2015 MANICODE SECURITY

...especially digital signatures.
A signed message is tied to its origin.

If a single message within the communication is
constructed or signed improperly, the entire transaction
will be invalidated

Mobile? Native? Sad Panda?

Crypto is hard.

OAuth v1 Workflow

Consumer Service Provider
ConsumerKey
0 Consumer Secret
Fetch Callback URL (1.0a) Issue
Request Token Request Token
e Redirectuser to Request Token
Provider for <
authorization Request Token

I Callback URL (1.0)

User grants

Exchange for < Verifier (1.0a)

authorization

v

RedirectUser
back to application

464[9

Access Token

Request Token
Verifier (1.0a)

Grant

Create < Access Token

Access Token

O

connection

http://docs.spring.io/spring-social/docs/1.1.0.RELEASE/reference/htmisingle/

COPYRIGHT ©2015 MANICODE SECURITY

OAuth2.0

OAuth 2

Transport Security

Centered around
bearer tokens

Much easier
to work with

Much more flexible

Better separation of duties

COPYRIGHT ©2015 MANICODE SECURITY

Security is delegated to HTTPS/TLS.

These are easy for integration but not great for security.

OAuth 2.0 is much more usable, but much more difficult
to build securely.

OAuth 2.0 considers non-web clients as well.

Resource requests and user authorization
can be decoupledin OAuth 2.0.

OAuth v2 Workflow

Client Application

Redirectuser to
Service Provider
for authorization

Client Id
Scope

Service Provider

User authenticates
pto Service Provider

Use Authorization
Code to Request
Access Token

Authorization Code

and grants
authorization

e v

RedirectUser
back to Client
Application

Authorization Code

se Access Token
o Access Protected
Resources from
Provider

Access Token

9 Grant

Access Token

COPYRIGHT ©2015 MANICODE SECURITY

OAuth v1 and v2: Which should you use?

Google moved away from OAuth 1.0 in April 2012.

Twitter still supports OAuth 1.0.

It's rare for new server implementations to support OAuth 1.0.
Plenty of OAuth 2.0 “add-on” RFC’s to support crypto if needed.

S0 2.0 in almost all situations in 2015+.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth and Interoperability...

Because OAuth 2.0 is more of a framework than

a protocol like OAuth 1.0, OAuth 2.0 implementations
are less likely to be naturally interoperable with any
other OAuth 2.0 implementations.

Unfortunately, the OAuth 2.0 specification leaves a
few required components partially or fully undefined
(for example, client registration, authorization server
capabilities, and endpoint discovery).

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Grant Types

Authorization Code Grants can hide long-lived tokens from the user.

Implicit Grants can only activate a short-lived token in the browser
when the user is currently logged on.

Resource-Owner Password Credentials Grants can grant and
expose long-lived tokens directly to the user via a trusted client.

Client Credentials Grants can grant and expose a long-lived token
directly to a client application that needs to access data not associated
with a specific user.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Terminology

COPYRIGHT ©2015 MANICODE SECURITY

High Level Concepts

Protected Resource
Valuable data or features protected by the service provider

OAuth 2.0 Actors
Resource owner/user, client application, resource server,
authorization server, user-agent

Token Types

- Refresh token

- Access token

- Authorization code token

OAuth 2.0 Grant
Types authorization code, implicit, resource-owner password credentials,
client credentials, extension.

COPYRIGHT ©2015 MANICODE SECURITY

Client Application Definition

Client Application

Application requesting access to protected resource on behalf of
resource owner. The application that the resource owner is providing
access to.

Client Application Types
- Mobile applications

- Web browsers

- Desktop applications

- Web server

COPYRIGHT ©2015 MANICODE SECURITY

Confidential vs Public Client Applications

Confidential Clients

An application that must register with authorization servers. Authorization
servers give unique client secrets to confidential clients when they
successfully register.

Public Clients
An application that anyone can download and use. Mobile apps and
native applications are example of public clients.

COPYRIGHT ©2015 MANICODE SECURITY

Additional OAuth 2.0 Terms

Resource Owner or End-User
User and account owner of resource (the end-user)

Resource Server/Service Provider
Server hosting protected resources owned by the end-user. Accepts
access tokens for protected resources.

Authorization Server/Service Provider

Server issuing access tokens to provide other clients access to protected
resources. Often same server as resource server. One authorization
server may issue access tokens to many resource servers.

COPYRIGHT ©2015 MANICODE SECURITY

Token Types

Access Token
OAuth token used to directly access protected resources on behalf of a
user or service.

Refresh Token

Refresh tokens, when given to the authorization server, will provide a
new active access token. Refresh tokens themselves cannot access
resources. While access tokens should be short lived, refresh tokens are
long lived or simply never expire until the user revokes them. Refresh
tokens also provide more scalable patterns.

Authorization Code Token

Authorization code tokens that are specific and exclusive to the
authorization code grant type used to retrieve access and/or refresh
tokens.

COPYRIGHT ©2015 MANICODE SECURITY

Other OAuth Term

Client Identifier
Unique ID used in part to authenticate a client application to an
authorization server.

Bearer Token

"A security token with the property that any party in possession of the
token (a "bearer") can use the token in any way that any other party in
possession of it can. Using a bearer token does not require a bearer to
prove possession of cryptographic key material (proof-of-possession).”

— https://tools.ietf.orqg/html/rfc6750#section-1.2

COPYRIGHT ©2015 MANICODE SECURITY

Danny (resource owner) has an account with

Twitter (service provider). Danny is also a regular
customer of the website Ono Ono Lau Lau Hawaiian
Cooking (confidential client application). Danny can grant
Ono Ono Lau Lau access to Danny's protected ability to
tweet at Twitter (resource server), without sharing
Danny's user name and password with Ono Ono Lau
Lau's website (client application).

Instead, Danny authenticates directly with Twitter (authorization server),
which issues the Ono Ono Lau Lau website an access token and

a refresh token that will let the Ono Ono Lau Lau website

tweet (access protected resources) on behalf of the user every

time they upload a new recipe.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Tokens

COPYRIGHT ©2015 MANICODE SECURITY

Access Tokens

Access tokens, simply put, are OAuth tokens used to access
protected resources.

® Access Token Fields

- token_type (required). The type of the token issued (mac
token, bearer token, etc).

- expires_in (recommended).The lifetime in seconds of the
access token.

- scope (required). The level of access permitted when
retrieving user resources. It is critical to build OAuth solutions
that limit the scope via principle of least privilege.

® Access tokens when used as a bearer token
- Bearer tokens are defined by RFC6750
- https://tools.ietf.org/html/rfc6750

COPYRIGHT ©2015 MANICODE SECURITY

Access Token General Countermeasures

" Ensure access tokens are all short-lived
(low session time or even one use per token).

® Consider supporting token revocation at the authorization
server
per RFC 7009 (OAuth 2.0 Token Revocation).

® Ensure scope of access tokens are as limited as possible.

" Protect access tokens on authorization servers in a one-
way fashion like other credentials used for authentication.

" Protect access tokens in client applications in a temporary,
secure storage mechanism.

COPYRIGHT ©2015 MANICODE SECURITY

Access Token General Countermeasures

" Ensure the authorization server provides only necessary
grants.

" Ensure hardening of the authorization server from token theft.

" Ensure basic web server and web application security best
practices.

= Use well-configured transport layer security (TLS) in all
aspects of OAuth 2.0 communication.

" Ensure high-entropy access tokens that cannot be guessed
or brute-forced.

® Consider strong authentication between the client application
and authorization server.

COPYRIGHT ©2015 MANICODE SECURITY

Refresh Tokens

= An active refresh token can request a new and active access token
from the authorization server repeatedly.

= Refresh tokens can be long-lived: they will persist until a user
invalidates them.

= Another distinction between a refresh token and an access token is
who consumes them.

- The refresh token is used only by the authorization server, and the access token is
used only by a resource server.

= The whole point of a refresh token is to be able to act on the user's
behalf when the user is not logged in, primarily via the authorization
code grant type.

COPYRIGHT ©2015 MANICODE SECURITY

Refresh Token General Countermeasures

= Consider not supporting refresh tokens. They are long-lived active
sessions and are inherently dangerous.

= Ensure refresh tokens can be easily listed and revoked by the resource
owner (user).

= Consider supporting token revocation at the authorization server per
RFC 7009 (OAuth 2.0 Token Revocation).

= Ensure the scope of refresh tokens is as limited as possible (refresh
tokens should only be able to request specific and scope-limited
access tokens).

= Protect refresh tokens on authorization servers in a one-way fashion
like other credentials used for authentication.

= Protect refresh tokens in client applications using secure long-term
storage mechanisms.

COPYRIGHT ©2015 MANICODE SECURITY

Refresh Token General Countermeasures

= Ensure hardening of the authorization server and client server
from token theft.

= Ensure web application security best practices for all servers.
= Use well-configured TLS in all aspects of OAuth 2.0 communication.

= Ensure high-entropy refresh tokens that cannot be guessed
or brute-forced.

® Bind refresh tokens to client ID and client secret.

= Consider strong authentication between the client application
and authorization server.

= Consider using proof-based tokens instead of bearer tokens
for refresh tokens.

COPYRIGHT ©2015 MANICODE SECURITY

Client Registration

COPYRIGHT ©2015 MANICODE SECURITY

Client Registration Overview

= Client registration occurs when the client application successfully
registers with a service provider.
(authorization server and resource server).

= OAuth 2.0 authorization servers can require client applications
to successfully register before other OAuth communication
(like resource server requests) can occur.

COPYRIGHT ©2015 MANICODE SECURITY

Client Types

There are two major categories of client applications defined by OAuth
2.0 — Confidential Clients and Public Clients

Confidential Clients
A confidential client can be a web server, web service, Cron job,

or some legacy system.
- Web Applications or Web Services

Public Clients
A public OAuth client is a client that does not require registration.

- Mobile or Native Applications
- Trusted or Third-Party Public

COPYRIGHT ©2015 MANICODE SECURITY

What Clients Provide Authorization Server
At Registration Time

= Client must tell the service provider what kind of client it is.
- Confidential Clients (i.e., web application)
- Public Clients (i.e., browser or native clients)

= Client should provide a client redirection URI (or URIs) to the
authorization server. The redirect URI or URIs are used by
the authorization code and implicit grant types.

= Client must provide the authorization server with other needed info
such as description, website, logo, etc.

COPYRIGHT ©2015 MANICODE SECURITY

What Authorization Server Create and Provide
at Registration Time

When clients successfully register with an authorization server,
the following happens:

= The authorization server provides each confidential client a
unique client identifier for future communication.

= Confidential clients are also given a unique client secret (credentials

like passwords or keys) that is required (along with the client identifier)
for future communications.

COPYRIGHT ©2015 MANICODE SECURITY

Client Registration Threats

= During the OAuth 2.0 registration process between a client application
and an authorization server, attackers can take advantage of aspects
of the OAuth 2.0 client application registration process to execute
these attacks.

®" They can use the authorization server as an open redirector or redirect
the user to a malicious page based on weak client registration.

" They can steal data from the network that OAuth communication
happens on due to weak or missing encryption in transit.

= They can use a malicious client application to steal data from the
authorization server based on weak client registration.

" They can set up a fraudulent authorization server meant to steal
credentials or hijack access from a genuine service.

COPYRIGHT ©2015 MANICODE SECURITY

Client Registration Controls

The following defenses are critical when considering security issues that
can arise due to poorly built client registration security.

1. Guarantee network communication confidentiality and integrity;
authorization server and resource server authenticity.

2. Ensure only genuine confidential clients can register with the
authorization server.

3. Ensure proper management of public clients.

4. Ensure authorization server protection from malicious or open
redirection via weak registration.

COPYRIGHT ©2015 MANICODE SECURITY

Grant Types

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Grant Types

You can hide long lived tokens token from the user (authorization
code grant)

You can only activate a short-lived token in the browser
when the user is currently logged on (implicit grant)

You can grant and expose a long-lived tokens directly to the user
via a trusted client (password grant).

You can grant and expose a long-lived token directly to other
services that need to access data not associated with a specific
user (client credentials grant)

COPYRIGHT ©2015 MANICODE SECURITY

Authorization Server Security

= TLS for everything (Authenticity, Confidentiality, Integrity)

= Authorization servers should not automatically process repeat
authorizations to public clients unless the client is validated using a
pre-registered redirect URI (Section 5.2.3.5).

= Authorization servers can mitigate the risks associated with automatic
processing by limiting the scope of access tokens obtained through
automated approvals (Section 5.1.5.1).

= Explain the scope (resources and the permissions) the user is about to
grant in an understandable way (Section 5.2.4.2).

= Narrow the scope as much as possible (Section 5.1.5.1).

® Don't redirect to a redirect URI if the client identifier or redirect URI
can't be verified (Section 5.2.3.5).

https://tools.ietf.org/html/rfc6819

COPYRIGHT ©2015 MANICODE SECURITY

Authorization Code Grant

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

The whole purpose of the authorization code grant type
Is to provide a client application (web application or
native client) access to users' protected resources

from another service.

In short, the user delegates (usually limited) access
to a client application.

COPYRIGHT ©2015 MANICODE SECURITY

3-Legged OAuth

Authorization Code Grant is often referred to as "three-legged OAuth 2.0”

® The first round trip redirects the user from the client application to the
authorization server, where the user logs into the authorization server
and is redirected back to the client application with a proper authorization
code. The user credentials used in this step by the user are never exposed
to the client application.

® The second round trip from the client application to the authorization server
contains the authorization code. This code is used to gain access to an access
or refresh token. No active refresh or access tokens are exposed to the user.

® The third round trip uses an active access token to request protected resources.

The user is never exposed or has access to the access token!

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

The User (Resource Owner) never has access to actual access token

The User (Resource Owner) never has access to actual access token

The Client application can use the access token even when the resource
owner is not present

Authorization Code Refresh Tokens are often long lived or permanent until
the User (Resource Owner) revokes this access through the Client Ul.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant

Access Token (with Optional Refresh Token)

Resource
Owner
e Client Identifier & Redirection URl ——
User e User Authenticates > Authorization
Agent Server
Authorization Code
4@ Authorization Code & Redirection URI
Client

http://tools.ietf.org/html/rfc6749

COPYRIGHT ©2015 MANICODE SECURITY

This event has ended. View the official site or create your own event + mobile app — | Check it out

AppSec California 2015

You have two accounts with the same email. To prevent log in issues, merge them here —

a Schedule ¥ Speakers Attendees D a Man
Jim Manico Search

Manicode Security Jan 26-28,2015
Secure Coding Instructor M Santa Monica, CA, United States
Anahola. Hawaii All Day Training Course
' Break
: Bug Bash
@ manico.net
Keynote
Jim Manico is an author and educator of developer security awareness trainings and has a 18 Offsite Recreation
year history building software as a developer and architect. He is a frequent speaker on secure software practices and is Presentation
; -y ; Turbo Talk
a member of the JavaOne rockstar speaker community. Jim is also a Global Board Member for the OWASP foundation e Pur T :
opular
where he helps drive the strategic vision for the organization. He manages and participates in several OWASP projects,
including the OWASP cheat sheet series and several secure coding projects. Jim recently finished authoring the book Recently Active Attendees
"Iron-Clad Java: Building Secure Web Applications" from Oracle Press. For more information, see
http://www.linkedin.com/in/jmanico. | '_’;
a4
A A

COPYRIGHT ©2015 MANICODE SECURITY

This event has ended. View the official site or create your o

Edit Your Profile

Name Email

Jim Manico > jim@manico.net F

Change your username, password and privacy settings?

Connect your social networks to instantly fill out your profile and find friends that are also attending.

[P
-

|
eSS i

Connect Facebook Connect Twitter

Upload New Photo

Connect Foursquare
Remove Photo

Company Name Company Position

Manicode Security e Secure Coding Instructor
Website Location

http://www.manico.net o Anahola, Hawaii 2

Tell us about yourself. What should people talk to you about?

[/appseccalifornia2015.sched.org/twitter

00 /y Twitter / Authorize an app! Q\\ \

Cl g :
« - C {ofilps://apl.tW|tter.com/oauth/authorlze?oauth_token=ch6HAAAAAAAAE6qAAABUaOthY kd o e

| . -

Authorize Sched.org to use your

account?
P— pm— Sched.org
i s anes By Sched.org
sched.org
This application will be able to: Sched powers conference and festival

. Read Tweets from your timeline. scheduling sites for events all over the

world. Connect your Twitter account and

* See who you follow. instantly find friends that are attending the

same events!
Will not be able to:

» Follow new people.
Update your profile.
» Post Tweets for you.

Access your direct messages.

See your Twitter password.

You can revoke access to any application at any time from the Applications tab of your Settings page.

By authorizing an application you continue to operate under Twitter's Terms of Service. In particular, some usage information will be shared back

with Twitter. For more, see our Privacy Policy.

Applications
These are the apps that can access your Twitter account. Learn more.

You will need to generate a temporary password to log in to your Twitter account on other
devices and apps. Learn more.

Having trouble? Learn more.

Twitter for iPhone by Twitter Learn how to revoke an iOS app.
g Twitter for iPhone
Permissions: read, write, and direct messages
\9 Vine - Make a Scene by Vine Labs, Inc

Approved: Friday, December 9, 2011 at 1:33:14 PM

The best way to see and share life in motion. BavOKe access
Permissions: read and write

Approved: Saturday, January 26, 2013 at 9:08:44 AM

iOS by Apple®

iOS Twitter integration

Permissions: read and write

Approved: Friday, October 14, 2011 at 9:16:53 PM

Revoke access

Sched.org by Sched.org

Sched powers conference and festival scheduling sites for
events all over the world. Connect your Twitter account and
instantly find friends that are attending the same events!
Permissions: read-only

Revoke access

OAuth 2.0 Authorization Code Grant

Access Token (with Optional Refresh Token)

Resource
Owner
e Client Identifier & Redirection URl ——
User e User Authenticates > Authorization
Agent Server
Authorization Code
4@ Authorization Code & Redirection URI
Client

http://tools.ietf.org/html/rfc6749

COPYRIGHT ©2015 MANICODE SECURITY

Authorization Code Variables

The client starts the "authorization code" workflow by redirecting the
user to the authorization server with the right request data. This initial
client request includes:

response_type : this is required by "authorization code" grant type and
should contain the value "code"

client_id: this is the client identifier assigned to the client at client
registration time. This is unique for every client for authorization code
grants.

scope: level of access requested, domain specific

redirection URI;: Where the authorization server redirects the user after
access is granted or denied

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
General Risks

" Threat agent can read authorization codes, tokens, client secrets, and other
sensitive data via network sniffing, referrer header leakage, browser history,
server logs, or unvalidated redirects.

" Threat agent can cause denial of service against service provider or client
application that is a web application or web service.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
Authorization/Resource Server Risks

" Threat agent can read an authorization code, access token, client ID, or other
client secret directly from the authorization server database due to SQL
Injection, weak access control, or poor database security.

" Threat agent can take advantage of authorization server redirects to conduct
open or malicious redirects.

" Threat agent can guess or brute force authorization codes, tokens, client ids or
other client secrets.

® Malicious client applications can exploit existing trust to gain malicious access
to protected resources.

= Authorization server provides a scope that is much more permissive than
needed, leading to a variety of access control weaknesses.

= Attacker can change scope of an existing active token for data theft.

= Malicious or counterfeit authorization server can steal credentials.

= CSRF attack against authorization code can force service provider to authorize
a user to access the threat agent's resources. From there the user may upload
data into the threat agent's account.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant:
Client Application Risks

" Threat agent steals client ID, client secrets, access tokens, or refresh token
directly from a client application. This is especially high impact when the token
is a bearer token and is not tied to the client application with stronger
authentication.

" Threat agent can take advantage of client application redirects to conduct open
or malicious redirects.

®" Threat agent can use a malicious client application to phish for user
credentials.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls

General Controls

- TLS Everywhere

- Ensure all standard webserver and standard web security controls
are implemented for all servers.

- Educate your users about the risk of phishing.

Resource Server Controls

- Ensure only active access tokens with proper scope are granted access
to protected resources

- Considerlimiting the number of uses (or one-time usage) for access tokens.

Client Application Controls

- Consider strong client authentication between the client application
and the service provider.

- When receiving a URL redirected from the the authorization server with sensitive
data, reload the user to a client URL that lets the clientapplication consume the
sensitive data (like an authorization code) but remove it from the user-agent.

- Ensure that all tokens are stored in a secure fashion.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls

During Client Registration

- Issue client secrets and client IDs only to clients with proper security policy.

- Ensure that all clients applications are given a unique and strong client ID/client secret
pair after successful registration.

- Ensure all clientapplications are forced to register a full redirect URI with the
authorization server.

Requesting an Authorization Code
- Verify that the pairing of clientID and client secret is valid.

- If the user is already authenticated at the service provider when being challenged to
provide delegated access, force reauthentication.

Explain scope to users as much as possible before they authorize access.
Store authorization codes as you would other credentials in the authorization server.
Only redirect to a URI that is registered with the authorization server.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Authorization Code Grant Server Controls

Requesting Access Token or Refresh Token

- Verify authorization codes like other credentials (see credential storage module) in the
authorization server.

- Limit the scope of all provided access tokens as much as possible.
- Force reauthorization when scope or other aspects of token changes.

- Ensure the validity of access tokens is short (the length of your clientapplication
session or less).

- Ensure that client secrets and all tokens for a specific user can be revoked by that
user.

- Considerlimiting authorization codes to only one use.
- Use the "state" parameter to avoid CSRF.

Detecting Malicious Activity

- Ensure that client ID, client secrets, and all active tokens for that client that can be
easily revoked by the authorization server.

COPYRIGHT ©2015 MANICODE SECURITY

CSRF attacks against OAuth

CSREF Attacks against Oauth: Part 1

1. Attacker assumes that Victim is currently logged in at Client Site
- https.//consumer-site.example/ (The OAuth ClientApplication)

2. Attacker goes through registration/login workflow at Client Site

- https.//consumer-site.example/login and uses that account to trigger a Oauth
workflow with the Provider Service (The OAuth authorization/resource server)

1) Client Site redirects attacker to Provider Site login interface.
- This is called the Authorization Request. hitps./provider-site.example/login

2) Attacker successfully logs in with Provider Site

3) Provider Site responds with redirect URL
which contains the authorization code
in the code parameter.

- This is called the Authorization Grant 8-
http.//consumer-site.example/auth?code=1a2s3d4f5g6h ﬁ/

COPYRIGHT ©2015 MANICODE SECURITY

CSREF Attacks against Oauth: Part 2

3. Instead of visiting or redirecting to the Authorization Grant redirect
URL, Attacker copies the URL and places a reference to it in an
Image tag on a web page

- ()
(https.//evil-page.example/)

4. Attacker gets Victim to visit https.//evil-page.example/.
This in turn gets Victim to request the Authorization Grant URL
http://consumer-site.example/auth?code=1a2s34f5g6h

D. By visiting the Authorization Grant URL, the Victim's Consumer Site
account is now attached via OAuth to the attackers Service account.
Any action that effects the service account by the Victim is
accessible to the Attacker.

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2 and avoiding CSRF

Consumer generates unique random state value, and stores it in server side
session variable. JSON Web Tokens are good for state values.

4 Consumer sends "state" parameter with Authorization Request

On successful authorization, Provider Site includes "state" parameter in
Authorization Grant redirect URI

When Victim visits redirect URI, the "state" parameter is compared against the
"state" parameter stored in server side session variable.

Use the "state" parameter, it is essentially a CSRF token!

COPYRIGHT ©2015 MANICODE SECURITY

What is an OAuth Code
Flow Open Redirector
Attack? How is it
stopped?

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2 Authorization Code Flow
Open Redirector: Attack

1.

Victim goes through login workflow at Consumer Site
(https://consumer-site.example/login) using Provider Site for
authorization.

Attacker constructs an Authorization Request URL for Provider Site
1. redirect_uriis set to https://evil-site.example/

Attacker either embeds evil URL in an image tag or constructs a
clickable link at Consumer Site.

When the evil URL is loaded, the provider will 302 redirect back to
redirect_uri since user was already logged in.

When the redirect occurs, the evil site can read the HTTP Referrer to
get the Authorization Code.

Using this Authorization Code, Attacker can login as user

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2 Authorization Code Flow
Open Redirector: Remediation

Whitelist redirect_uri!

There is no need for a Provider
to require the redirect_uri param!

COPYRIGHT ©2015 MANICODE SECURITY

What Happens if an
Access Token
IS Stolen?

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2 Implicit Flow | ' A
Accesggfoken Reusg: At

o = Ve

VICtim authorfzes ViiEs® e ' @ierovider, Sife

using access . tokeny" (. ‘ ’,(

Acme Wiagef;ﬁo'n? awsfor authehtication: &
"a . ;' J ok | \

Attac ihentigats

acces SRS usiigHl

widgets @capp&e pACKS

N
4

G o X - -
v

~

v
2.
3.

£

Sim . NG RS A
Y IR
MRS\

L ¥ ",4 = .‘
"o W4 \‘&

Conclusion

COPYRIGHT ©2015 MANICODE SECURITY

OAuth 2.0 Summary

= |t takes massive efforts to build secure OAuth 2 solutions
® The core standard barely addresses security

= Major providers with PHDs to spare are overall doing
a reasonable job of build secure solutions

= Clients are at risk because they are likely to build less security
Implementations than providers

= Buckle up, read the threat model several times and follow it's many
many many recommendations

COPYRIGHT ©2015 MANICODE SECURITY

Authentication: Where we’ve been

OAuth Terms
Client Registration
OAuth Grant Types

OAuth Threat Model

OAuth Countermeasures and Controls

COPYRIGHT ©2015 MANICODE SECURITY

It's been a pleasure.

jim@manicode.com

JIMMANICO Secure Coding Instructor www.manicode.com

